We are on the edge of two potent technological changes: Clouds and Memory Based Architectures. This evolution will rip open a chasm where new players can enter and prosper. Google is the master of disk. You can't beat them at a game they perfected. Disk based databases like SimpleDB and BigTable are complicated beasts, typical last gasp products of any aging technology before a change. The next era is the age of Memory and Cloud which will allow for new players to succeed. The tipping point will be soon.
Let's take a short trip down web architecture lane:
Let's take a short trip down web architecture lane:
You may disagree with the timing of various innovations and you would be correct. I couldn't find a history of the evolution of website architectures, so I just made stuff up. If you have any better information please let me know.
Why might cloud based memory architectures be the next big thing? For now we'll just address the memory based architecture part of the question, the cloud component is covered a little later.
Behold the power of keeping data in memory:
Google query results are now served in under an astonishingly fast 200ms, down from 1000ms in the olden days. The vast majority of this great performance improvement is due to holding indexes completely in memory. Thousands of machines process each query in order to make search results appear nearly instantaneously.This text was adapted from notes on Google Fellow Jeff Dean keynote speech at WSDM 2009.
Google isn't the only one getting a performance bang from moving data into memory. Both LinkedInand Digg keep the graph of their network social network in memory. Facebook has northwards of 800 memcached servers creating a reservoir of 28 terabytes of memory enabling a 99% cache hit rate. Even little guys can handle 100s of millions of events per day by using memory instead of disk.
With their new Unified Computing strategy Cisco is also entering the memory game. Their new machines "will be focusing on networking and memory" with servers crammed with 384 GB of RAM, fast processors, and blazingly fast processor interconnects. Just what you need when creating memory based systems.
Memory Is The System Of Record
What makes Memory Based Architectures different from traditional architectures is that memory is the system of record. Typically disk based databases have been the system of record. Disk has been King, safely storing data away within its castle walls. Disk being slow we've ended up wrapping disks in complicated caching and distributed file systems to make them perform.Sure, memory is used as all over the place as cache, but we're always supposed to pretend that cache can be invalidated at any time and old Mr. Reliable, the database, will step in and provide the correct values. In Memory Based Architectures memory is where the "official" data values are stored.
Caching also serves a different purpose. The purpose behind cache based architectures is to minimize the data bottleneck through to disk. Memory based architectures can address the entire end-to-end application stack. Data in memory can be of higher reliability and availability than traditional architectures.
Memory Based Architectures initially developed out of the need in some applications spaces for very low latencies. The dramatic drop of RAM prices along with the ability of servers to handle larger and larger amounts of RAM has caused memory architectures to verge on going mainstream. For example, someone recently calculated that 1TB of RAM across 40 servers at 24 GB per server would cost an additional $40,000. Which is really quite affordable given the cost of the servers. Projecting out, 1U and 2U rack-mounted servers will soon support a terabyte or more or memory.
RAM = High Bandwidth And Low Latency
Why are Memory Based Architectures so attractive? Compared to disk RAM is a high bandwidth and low latency storage medium. Depending on who you ask the bandwidth of RAM is 5 GB/s. The bandwidth of disk is about 100 MB/s. RAM bandwidth is many hundreds of times faster. RAM wins. Modern hard drives have latencies under 13 milliseconds. When many applications are queued for disk reads latencies can easily be in the many second range. Memory latency is in the 5 nanosecond range. Memory latency is 2,000 times faster. RAM wins again.RAM Is The New Disk
The superiority of RAM is at the heart of the RAM is the New Disk paradigm. As an architecture it combines the holy quadrinity of computing:Access disk on the critical path of any transaction limits both throughput and latency. Committing a transaction over the network in-memory is faster than writing through to disk. Reading data from memory is also faster than reading data from disk. So the idea is to skip disk, except perhaps as an asynchronous write-behind option, archival storage, and for large files.
Or Is Disk Is The The New RAM
To be fair there is also a Disk is the the new RAM, RAM is the New Cache paradigm too. This somewhat counter intuitive notion is that a cluster of about 50 disks has the same bandwidth of RAM, so the bandwidth problem is taken care of by adding more disks.The latency problem is handled by reorganizing data structures and low level algorithms. It's as simple as avoiding piecemeal reads and organizing algorithms around moving data to and from memory in very large batches and writing highly parallelized programs. While I have no doubt this approach can be made to work by very clever people in many domains, a large chunk of applications are more time in the random access domain space for which RAM based architectures are a better fit.
Grids And A Few Other Definitions
There's a constellation of different concepts centered around Memory Based Architectures that we'll need to understand before we can understand the different products in this space. They include:Who Are The Major Players In This Space?
With that bit of background behind us, there are several major players in this space (in alphabetical order):This class of products has generally been called In-Memory Data Grids (IDMG), though not all the products fit snugly in this category. There's quite a range of different features amongst the different products.
I tossed IDMG the acronym in favor of Memory Based Architectures because the "in-memory" part seems redundant, the grid part has given way to the cloud, the "data" part really can include both data and code. And there are other architectures that will exploit memory yet won't be classic IDMG. So I just used Memory Based Architecture as that's the part that counts.
Given the wide differences between the products there's no canonical architecture. As an example here's a diagram of how GigaSpaces In-Memory-Data-Grid on the Cloud works.
Some key points to note are:
Not conceptually difficult and familiar to anyone who has used caching systems like memcached. Only is this case memory is not just a cache, it's the system of record.
Obviously there are a million more juicy details at play, but that's the gist of it. Admittedly GigaSpaces is on the full featured side of the product equation, but from a memory based architecture perspective the ideas should generalize. When you shard a database, for example, you generally lose the ability to execute queries, you have to do all the assembly yourself. By using GigaSpaces framework you get a lot of very high-end features like parallel query processing for free.
The power of this approach certainly comes in part from familiar concepts like partitioning. But the speed of memory versus disk also allows entire new levels of performance and reliability in a relatively simple and easy to understand and deploy package.
NimbusDB - The Database In The Cloud
Jim Starkey, President of NimbusDB, is not following the IDMG gang's lead. He's taking a completely fresh approach based on thinking of the cloud as a new platform unto itself. Starting from scratch, what would a database for the cloud look like?Jim is in position to answer this question as he has created a transactional database engine for MySQL named Falcon and added multi-versioning support to InterBase, the first relational database to feature MVCC (Multiversion Concurrency Control).
What defines the cloud as a platform? Here's are some thoughts from Jim I copied out of the Cloud Computing group. You'll notice I've quoted Jim way way too much. I did that because Jim is an insightful guy, he has a lot of interesting things to say, and I think he has a different spin on the future of databases in the cloud than anyone else I've read. He also has the advantage of course of not having a shipping product, but we shall see.
is a different way of thinking, a different topology, a different way of putting the parts together.
cache. Yes, disks are still there, but they're out of the performance loop except for data so stale that nobody has it memory.
single computer. Bah, I say, bah!
rather than a feature. If a database system had sufficient capacity, reliability, and availability, nobody would ever partition or shard data. (If one database instance is a headache, a million tiny ones is a horrible, horrible migraine.)
boring business model. When clouds evolve to point that applications and databases can utilize whatever resources then need to meet demand without the constraint of single machine limitations, we'll have something really neat.
will have different views. Certain critical operations must be serialized, but that still doesn't require that all nodes have identical views of database state.
Jim certainly isn't shy with his opinions :-)
My summary of what he wants to do with NimbusDB is:
I'm not sure if NimbusDB will support a compute grid and map-reduce type functionality. The low latency argument for data and code collocation is a good one, so I hope it integrates some sort of extension mechanism.
Why might NimbusDB be a good idea?
The smart money has been that cloud level scaling requires abandoning relational databases and distributed transactions. That's why we've seen an epidemic of key-value databases and eventually consistent semantics. It will be fascinating to see if Jim's combination of Cloud + Memory + MVCC can prove the insiders wrong.
Are Cloud Based Memory Architectures The Next Big Thing?
We've gone through a couple of different approaches to deploying Memory Based Architectures. So are they the next big thing?Adoption has been slow because it's new and different and that inertia takes a while to overcome. Historically tools haven't made it easy for early adopters to make the big switch, but that is changing with easier to deploy cloud based systems. And current architectures, with a lot of elbow grease, have generally been good enough.
But we are seeing a wide convergence on caching as way to make slow disks perform. Truly enormous amounts of effort are going into adding cache and then trying to keep the database and applications all in-sync with cache as bottom up and top down driven changes flow through the system.
After all that work it's a simple step to wonder why that extra layer is needed when the data could have just as well be kept in memory from the start. Now add the ease of cloud deployments and the ease of creating scalable, low latency applications that are still easy to program, manage, and deploy. Building multiple complicated layers of application code just to make the disk happy will make less and less sense over time.
We are on the edge of two potent technological changes: Clouds and Memory Based Architectures. This evolution will rip open a chasm where new players can enter and prosper. Google is the master of disk. You can't beat them at a game they perfected. Disk based databases like SimpleDB and BigTable are complicated beasts, typical last gasp products of any aging technology before a change. The next era is the age of Memory and Cloud which will allow for new players to succeed. The tipping point is soon.